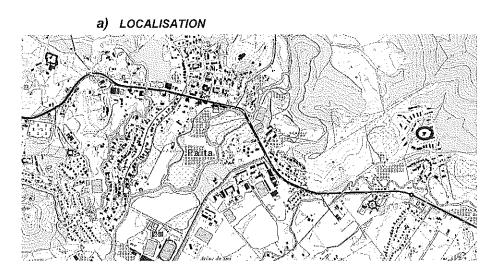


BILAN 24H 2015

STATION D'EPURATION
RESIDENCE NOGOUTA PARC
STATION DE TYPE SBR
Mesures réalisées du 5 au 6 août 2015

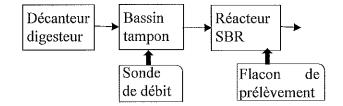


RESUME

Station Nogouta Parc SBR	112 EH
Charge polluante sortante	станий министепення (Ситова в гоннови), в овы в меньник и додорувающего дининов.
Charge hydraulique	18,75 %
Analyses	Non conforme
Conclusion:	

I. Presentation de la station

b) CARACTERISTIQUES THEORIQUES


Les eaux usées transitant dans la station sont uniquement des eaux vannes et des eaux ménagères, le réseau de la résidence Nogouta Parc étant un réseau séparatif.

DONNEES NOMINALES	
Nombre d'EH	112 Eh
Volume journalier théorique (150L/EH/j)	16,8 m3/j
DBO5 journalière (60 g/EH/j)	6,7 kg/j
DCO journalière (120g/Eh/j)	13,4 kg/j
MES journalier (90 g/Eh/j)	10 kg/j

La déclaration ou l'autorisation d'exploitation a fait l'objet du Récépissé n°2010-25055/DENV du 19 mai 2010 (annexe 1).

c) FILIERE DE TRAITEMENT ET EQUIPEMENTS

La station d'épuration est un système d'assainissement collectif de type SBR

II. RESULTATS DU BILAN

a) MESURE DE DEBIT

Une sonde pression a été placée dans le bassin tampon du 5 au 6 août 2015. La courbe de la mesure est en annexe 2. Le bilan a été réalisé par temps sec (voir annexe 3).

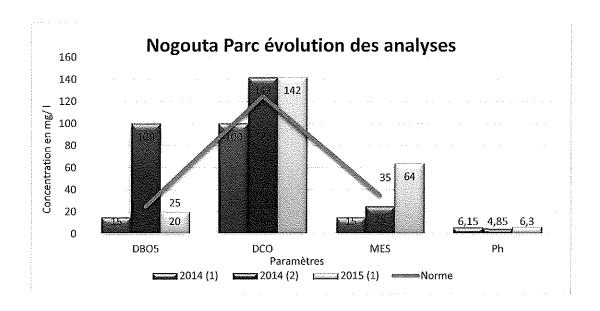
Résultats de la mesure de débit	
Débit moyen	131 l/h
Volume journalier	$3,15 \text{ m}^3/\text{j}$
Equivalents habitants (150 l/EH/j)	21
Nombre de pompages	7

b) ANALYSES

Le prélèvement a été effectué le 6 août 2015. Les SBR sont équipés de flacons en sortie de station, c'est cet échantillon qui est analysé.

Les résultats de cette campagne sont présentés dans le tableau ci-dessous. Le rapport d'analyses est joint en annexe 4.

Analyses	Sonite	Normes de reiet*	Conformité Step**
DBO5 mg/L	20	25	C
DCO mg/L	142	120	NC
MES mg/L	64	35	NC
рH	6,3	Entre 6 et	C
		8,5	


^{*}Selon la délibération n°10277/DENV/SE du 30 avril 2009, cf. annexe 1

Les concentrations en DCO et en MES sont supérieures aux valeurs réglementaires.

^{**}C = conforme NA = non applicable

III. EVOLUTION DES BILANS 24H

IV. CONCLUSIONS

Le bilan est non conformes à cause de la DCO et des MES.

D'après les résultats nous constatons que la station d'épuration est chargée en boues activées.

Nous n'avons pour l'instant pas la possibilité de les évacuer et de les traiter en Nouvelle Calédonie

Un pompage du décanteur primaire est à prévoir prochainement

4

ANNEXES

ANNEXE 1 : Normes de rejet et délibérations provinciales

Niveau de rejet des stations d'épuration

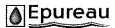
	Délibération n'205-97/BAPS du 20 juin 19	97
	STEP entre 50 et 500 EH	
	Filière biologique	Filière physico-chimique ⁽¹⁾
pH	entre 5,5 et 8,5	
Température	≤30€	
DBO ₅	soit ≤ 35 mg/l ou rendement ≥ 60%	rendement ≥ 30%
DCO	soit rendement ≥ 60%	
MES		rendement ≥ 50%

⁽¹⁾ s'il est justifié de l'innocuité du rejet pour le milieu récepteur

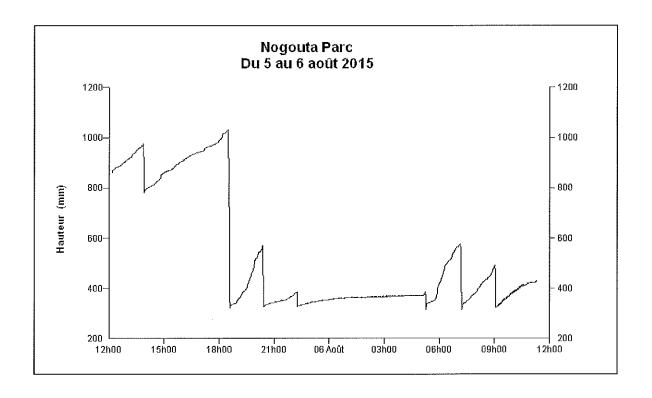
1 1 1 1 1 1					
	Délit	ération nº10277/DENV/SE du 30 avril	2009		
	STEP entre 50 et 500 EH				
1 1 1 1	Filière biologique	Lagunage	Fillère physico-chimique ⁽¹⁾		
ρH	4 4 4 4 6 entre 6 et 8,5	ranto e interesta de la compansión de la c			
Température	≤30℃	t in the second of the second			
DBO ₅	≤ 25 mg/ĭ		rendement ≥ 35%		
DCO	≤ 125 mg/l	rendement ≥ 60%	rendement ≥ 60%		
MES	≤ 35 mg/l	≤ 150 mg/i	rendement ≥ 60%		

⁽¹⁾ s'il est justifié de l'innocuité du rejet pour le milieu récepteur

		Arrêté du 22 juin 2007 - France	
	STEP entre 2	0 et 2 000 EH	STEP > 2 000 EH
	Toutes les STEP	Lagunage	Toutes les STEP
pH			entre 6 et 8,5
Température	There is a first the Charles of the Charles	The Sign of the Si	1.771.79. 14.7 ≤ 25℃ 1991 1991
D80 ₅	≤ 35 mg/l ou rendement ≥ 60%		≤ 25 mg/l ou rendement ≥ 70% ⁽²⁾
DCO	rendement ≥ 60%	rendement ≥ 60%	≤ 125 mg/i ou rendement ≥ 75%
MES	rendement ≥ 50%		≤ 35 mg/i ⁽³⁾ ou rendement ≥ 90%
NGL			≤ 15 mg/i ou rendement ≥ 70% ⁽⁴⁾⁽⁵⁾
PT	· · · · · · · · · · · · · · · · · · ·		≤ 2 mg/l ou rendement ≥ 80% ⁽⁴⁾⁽⁶⁾


^{(2) 80%} si STEP > 10 000 EH

^{(3) 150} mg/l en cas de lagunage


⁽⁴⁾ STEP > 10 000 EH situées en zone sensible

^{(5) ≤ 10} mg/l ou rendement ≥ 70% si STEP > 100 000 EH

 $^{^{(6)} \}le 1 \text{ mg/l}$ ou rendement $\ge 80\% \text{ si STEP} > 100 000 \text{ EH}$

ANNEXE 2 : Courbe de débit

ANNEXE 3 : Pluviométrie

SUIVI METEOROLOGIQUE QUOTIDIEN GENERALISTE

Données météorologiques quotidiennes

Août 2015

PAITA (988)

Indicatif: 98821002, alt: 21 m., lat: 22°08'06"S, lon: 166°22'06"E

Dale	RR
Période	05-05
Unitè	70.m et 1/10
sam. 1	tr.
dim. 2	-
lun.3	-
mar. 4	ــــــــــــــــــــــــــــــــــــــ
mer. 5	0
jeu. 6	·
ven.7	0.3
sam, 8	0.2
dim. 9	2.2
lun. 10	0.4
mar. 11	
mer. 12	tr.
jeu. 13	-
ven. 14	4.4
sam. 15	1.2
dim. 16	0.7
lun. 17	
mar. 18	1.1
mer. 19	2.8
jeu. 20	0.2
ven, 21	
sam. 22	0.2
dim. 23	
lun. 24	
mar. 25	
mer. 26	-
jeu. 27	
ven.28	
sam. 29	
dim.30	
iun. 31	
Décade 1	3.1
Dècade 2	10.4
Décade 3	0.2
Mois	13.7

^{- :} donnée manquante ; lorsqu'un paramètre n'est pas mesuré il n'y a pas de valeur associée (colonne ou case vide) .: donnée égale à 0 tr.; traces pour les précipitations ; en italique : donnée estimée Heures indiquées en heure fuseau.

Edité le : 14/09/2015

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

ANNEXE 4: Rapport d'analyses

Rapport d'analyse 2015/08/R0115

BC n° Aff n° Devis n°

EPUREAU Epureau 20, bis rue Descartes 382098846 Noumêa Cedex Tel: 28 17 27 epureau@epureau.no

Echantillon : 2015/08/E0070 Lieu du prélèvement: Nogouta Parc Date de début d'analyse : 06/08/2015 Nature de l'échantillon : Eau usée Référence Client : Sortie STEP Température à réception : 26.1°C

Date de prélèvement : 06/08/2015 11:00 Date de réception : 06/08/2015 11:45 Date de fin d'analyse : 24/08/2015

Préleveur : Flaconnage : labeau

Analyse	Mélhode	Résultat	Unite	Eaux usées normes calédoniennes selon la délibération	Limile de
				nº10277/DENV/SE du 30 avril 2009	quantification
	14.45		Paramètre indé	sirable	
Demande biologique en oxygéne DBO5	NF EN 1899-1	20	mg O2/L	25	3
Matières en suspension (MES)	NF EN 872	64	mg/L	35	2
Demande chimique en oxygène DCO	ISO 15705:2002	142	mg/l.	125	3
		•	Parametre physico	chimique	
Température de mesure du pH	NF T90-008	22,5	°C		0.1
pH	NF T90-008	6.30	Unités pH	6-8.5	0,1

Remarques/Commentaires :

[1] Les résultats se rapportent uniquement à set énhantillen.

[2] Pour déclairer ou non la sonformité, il n'a pas été tent exploitement compte de l'acceptitude associée aux résultats,

[3] Les résultats produété du type « 4 correspondent aux livites de quantification. 180 = somme non maioritée.

[4] Toutes les réformations rétaires aux analyses sont dispositées au bisonatoire sur demande (Procritades...)

[5] Les larietées de prontfouriens indiquées expriment les asposités optimales de nos procédés et n'ord à ce litre qu'une visleur indicative. Des variations de ces sessits sont auxoeptibles d'être observées lors de l'analyse d'éviantifiens de nouve de l'analyse d'éviantifiens de nouve de l'analyse d'éviantifiens de nouve de la contraction de nouve de l'analyse d'éviantifiens de nouve de l'analyse d'éviantifiens de l'analyse de l'analyse de l'analyse d'éviantifiens de l'analyse de l'analyse de l'analyse de l'analyse d'éviantifiens de l'analyse de l'analyse de l'analyse de l'analyse d'éviantifiens de l'analyse de l'analyse de l'analyse de l'analyse d'éviantifiens de l'analyse d'éviantifiens de l'analyse de l'analyse

Nവണ്ട് ച 2*41*08/2015

Responsable de laboratoire